
Stefan Altherr (334446)
altherr@rhrk.uni-kl.de

Seminar Report

„Algorithms for Two
Bottleneck Optimization

Problems“

Harold N. Gabow and Robert E. Tarjan ,1987

Content:

o. Introduction Page 2

1. Bottleneck Spanning Trees in Directed Graphs Page 3
1.1 Basics Page 3
1.2 Dijkstra’s Algorithm Page 6
1.3 Revised Algorithm by Gabow and Tarjan Page 8
1.4 Computing Times Page 12
1.5 Further Information Page 13

2. Bottleneck Maximum Cardinality Matchings Page 14
2.1 Basics Page 14
2.2 Maximum Cardinality Matchings Page 15
2.2.1 Theorem about Matching Augmenting Path Page 16
2.2.2 König’s Theorem Page 19
2.3 Maximum Cardinality Matching Algorithm Page 22
2.4 Developing a faster Algorithm Page 24
2.5 Enhancing the Algorithm’s Performance Page 25
2.6 Computing Times Page 25

3. Further Developments Page 26

 2

0. Introduction

Bottleneck Optimization Problem:
Find a subgraph in a graph with edge costs, that minimizes the maximum
edge cost in the subgraph.

Definition:
A graph G = (V, E) is a finite, nonempty set of vertices V = {v1, …, vn} and
edges E = {e1, …, em}. Each edge is defined by two endpoints and
denoted by e = [vi, vj] or e = [i, j].

Definition:
The edge costs c(i, j) = cij define the “length” of an edge. If two vertices i,
j are not directly connected by an edge, the edge cost is set to infinity,
i.e. eij = ∞.

Example:
Directed graph with non-negative edge costs

1

2 4

3 5

6

2

3

1

3

1

2

2

5

The paper proposes two algorithms for finding a bottleneck spanning tree
in a directed graph and the bottleneck maximum cardinality matching
problem.

 3

1. Bottleneck Spanning Trees in Directed Graphs
1.1 Basics

Let G = (V, E) be a directed graph.

1

2 4

3 5

6

2

3

1

3

1

2

2

5

G’ is a subdigraph of G if G’ = (V’, E’) with V’⊂V and E’⊂E.

1

2 4

5

6

2

3

2

2

G’’ is a spanning subdigraph of G if V’=V.

1

2 4

3 5

6

2

1

3

1

2

2

 4

A tree is a connected graph that does not contain any cycles.

1

2 4

3

2

3

1

A spanning tree T of G is a tree that is a spanning subgraph of G.

1

2 4

3 5

6

2

3

1

1

2

5

A bottleneck spanning tree is a spanning tree whose maximum edge
cost is minimum.

1

2 4

3 5

6

2

1

1

2

2

 5

Our goal is to find such a bottleneck spanning tree in a directed graph.
We consider the problem of finding a spanning tree rooted at s
(containing paths from s to all other vertices) whose maximum edge cost
is minimum.

For this let G = (V, E) be a directed graph with n vertices and m edges.
(wlog m ≥ n ≥ 2).
Let s be a root vertex of G and for each edge (v, w) let cvw be a real
valued cost.

 6

1.2 Dijkstra’s Algorithm

To find a solution for our bottleneck problem we start with Dijkstra’s
algorithm. This algorithm solves the shortest directed graph dipath
problem with respect to non-negative costs c(e) with a complexity of
O(n²).
The algorithm works as follows:

DIJKSTRA’S ALGORITHM

(INPUT) G = (V, E) digraph with costs c(e) ≥ 0 (∀ e ∈ E)

(1) Set di := ∞ (∀ i = 1, …, n), ds := 0, pred(s) := 0, p(s) := 1.
a. Set Xp := {s}
b. pi := csi (∀ i ∈ E \ Xp)
c. pred(i) = s (∀ i ∈ E \ Xp)

(2) Determine Ip+1 with pi(p+1) =
min

i ∈ E/Xp
 pi and set di(p+1) := pi(p+1).

If pi(p+1) = ∞ (STOP), dipath from s to i, ∀ i ∈ Xp do not exist.
(3) Set Xp+1 := Xp ∪ {ip+1}

p := p+1
If p = n (STOP), all shortest dipaths Psi are known.

(4) For all i ∈ Xp do
If pi > di(p) + ci(p),i set pi := di(p) + ci(p),i
pred(i) := ip.
Goto Step (2)

When the algorithm terminates, the subgraph T = (V’, E’) with
V’ := {i | di < ∞} and E’ := {(pred(j), j | j ∈ V’)} contains no cycle. The tree
T has the property that there exists a uniquely defined path from the
source-node s to i for every i ∈ V’. These paths are the shortest dipath
from s to i. T is called the shortest dipath tree with root s. T is a spanning
tree if di < ∞ ∀ i ∈ V.

 7

Example:

1

2 4

3 5

6

2

3

1

3

1

2

2

5

Determine shortest dipath from s = 1 to vi, i = 2, …, 6.

P v2 v3 v4 v5 v6 X(p+1)
p(j) 2 1 inf inf inf1

pred(j) 1 1 1 1 1 {v1, v3}
p(j) 2 - inf 2 inf2

pred(j) 1 - 1 3 - {v1, v3, v2}
p(j) - - 5 2 inf3

pred(j) - - 2 3 - {v1, v3, v2, v5}
p(j) - - 4 - 7 4

pred(j) - - 5 - 5 {v1, v3, v2, v5, v4}
p(j) - - - - 6 5

pred(j) - - - - 4 {v1, v3, v2, v5, v4, v6}

T = (V’, E’) with
V’ := {i | di < ∞} = {v1, …, v6} and
E’ := {(pred(j), j) | j ∈ V’} = {(1, 3), (1, 2), (3, 5), 5, 4), (4, 6)}
Î Shortest dipath tree with root v1

1

2 4

3 5

6

2

1

1

2

2

 8

1.3 Revised Algorithm by Gabow and Tarjan

While Dijkstra’s algorithm runs in O(n log n + m) time, for sparse graphs
Gabow and Tarjan build an algorithm with the better bound of O(m
log*n). log* is the iterated logarithm defined by
log(0)x = x
log(i+1)x = log log(i)x
log*x = min[i | log(i)x ≤ 1}.

 9

For any real number λ, let G(λ) = (V, {(v, w) ∈ E | c(v, w) = cvw ≤ λ}), which
means, that all edges with cost larger than λ are cut away.
Further λ* = min{λ | ∀ v ∈ V there is a path in G(λ) from s to v}.

Example:
G = (V, E):

1

2 4

3 5

6

3

8

6

2

4

1

7

5

G(5) = (V, E’):

1

2 4

3 5

6

3

2

4

1

5

G(3) = (V, E’’):

1

2 4

3 5

6

3

2 1

 10

To find a bottleneck spanning tree, it suffices to compute λ*, since any
spanning tree in G(λ*) is a bottleneck spanning tree for G and it can be
found in O(m) time.

To compute λ*, we split repeatedly to narrow the interval of possible
values. The number of intervals k(i) is a function of the number of splits
that have taken place. The algorithm computes values λ1, λ2 such that
λ1 ≤ λ* ≤ λ2.
When we start the algorithm λ1 respectively λ2 are the minimum and
maximum edge costs, and i counts the iterations.

GABOW - TARJAN SPLITTING ALGORITHM

(1) Set i := i+1. Let S0 = {(v, w) ∈ E | cvw ≤ λ1} and E1 = {(v, w) ∈ E |
λ1 < cvw ≤ λ2}.

(2) Partition E1 into k(i) subsets S1, S2, …, Sk(i), such that if (v, w) ∈
Si and (x, y) ∈ Si+1 Î cvw ≤ cxy.

(3) Find the minimum j, such that in Gj = (V, S0 ∪ S1 ∪ … ∪ Sj) all
vertices are reachable from s.

(4) If j = 0 Î λ* = λ1 (STOP)
Else replace λ1, λ2 respectively by the minimum cost and the
maximum cost of an edge in Sj. (GOTO (1)).

 11

Example:
Given G = (V, E):

2 4 6

3 5 7

1 8
1

2

3 4

5

6

7

8

9

10 11

12

13

14

(INPUT) Set i = 0; λ1 = 1; λ2 = 14, we chose k(i) = 2i, source s = v1

(1) i = 0+1 = 1
S0 = {(1, 2)}
E1 = {(5, 4), (4, 2), (6, 8), (2, 3), (8, 7), (4, 6), (7, 8), (5, 7), (3, 5), (7, 5), (2,
4), (3, 1), (6, 7)}

(2) k(i) = 21 = 2
S1 = {(5, 4), (4, 2), (6, 8), (2, 3), (8, 7), (4, 6), (7, 8)}
S2 = {(5, 7), (3, 5), (7, 5), (2, 4), (3, 1), (6, 7)}
(Only vertex 2 can be reached from s)

(3) Gj = (V, S0 ∪ S1 ∪ S2) Î j = 2
(4) λ1 = 9, λ2 = 14

(1) i = 1+1 = 2

S0 = {(1, 2), (5, 4), (4, 2), (6, 8), (2, 3), (8, 7), (4, 6), (7, 8)}
E1 = {(7, 5), (2, 4), (3, 1), (6, 7)}

(2) k(i) = 2² = 4
S1 = {(3, 5), (7, 5)}
S2 = {(2, 4)}
S3 = {(3, 1)}
S4 = {(6, 7)}
(Only vertices 2 and 3 can be reached from s)

(3) Gj = (V, S0 ∪ S1) Î j = 1
(4) λ1 = 10, λ2 = 11

(1) i = 2+1 = 3

S0 = {(1, 2), (5, 4), (4, 2), (6, 8), (2, 3), (8, 7), (4, 6), (7, 8), (3, 5), (3, 5)}
E1 = {(7, 5})

(2) k(i) = 2³ = 8
S1 = {7, 5)}
(All vertices can be reached from s)

(3) Gj = (V, S0) Î j = 0
λ* = λ1 = 10 Î (STOP)

 12

1.4 Computing Times

• Steps (1) and (4) each take O(m) time per iteration.

• Step (3) takes O(m) time using an incremental search. Start at s

and advance only along edges in S0. If the search stops before all
vertices are reached, edges in S1 become eligible for searching
and so on.
This search algorithm takes O(m) time. We have a closer look at it
in 1.5

• Gabow and Tarjan chose k(i) different than we did in the example.
They define:
k(1) = 2; k(i) = 2k(i-1)

k(1) = 2, k(2) = 2² = 4, k(3) = 24 = 16, k(4) = 216 = 65536, ...

This choice guarantees that in the i-th iteration |E1| = O(m
k(i-1)),

which implies that step (2) in the i-th iteration takes O(m
k(i-1) log

k(i)) = O(m) time.
Each iteration takes O(m) time and we have to perform O(log*n)
iterations Î the algorithm computes in O(m log*n) time.

 13

1.5 Further Information

• In Step (2) we partition E1 into k(i) subsets. Dividing |E1| by k(i)
generally does not deliver integers. So the sizes of S1, …, Sk(i) can
be chosen |E1| / k(i) or |E1| / k(i)⌡ without inflicting with the
algorithm’s result or performance.

• Implementation of the incremental search in step (3) requires an
adjacency list A(v) for each vertex v. Each vertex is in one of three
states: unlabeled, labeled or scanned.

• The search can be performed using the following algorithm:

SEARCH ALGORITHM (STEP (3) OF GABOW – TARJAN
SPLITTING ALGORITHM)

(3.0) Set s labeled and all other vertices unlabeled.

Set j := 0, a(v) = {w | (v, w) ∈ S0}.
(3.1) If some vertex is labeled, select a labeled vertex v and

mark it scanned Î (GOTO (3.2))
Else if no vertex is unlabeled Î (STOP)
Else Î (GOTO (3.3))

(3.2) For every vertex w ∈ A(v), if w is unlabeled, mark it
labelled Î (GOTO (3.1))

(3.3) Set j := j+1. For each edge (v, w) Sj, if v is unlabeled,
add w to A(v).
Else if w is unlabeled, mark w labeled Î (GOTO (3.1))

This search algorithm is a formal implementation of what we did
intuitively in the example of the splitting algorithm.

• With the same splitting algorithm we can solve the bottleneck
shortest path problem.
Two vertices s, t are given in a directed graph and the task is to
find a path from s to t that minimizes the maximum cost of an edge
on the path.
All we have to do is to stop when vertex t is reached in step (3)
instead of checking for all vertices. The algorithm performs in
O(min(n log n + m, m log*n)) time.

 14

2. Bottleneck Maximum Cardinality Matchings

2.1 Basics

Let G = (V, E) be an undirected graph.
G is bipartite if V can be partitioned into two sets L and R, such that
every edge has one vertex in L and one vertex in R.

l3

l1

l2

r1

r2

L
R

A matching is a subset of edges, no two sharing a common vertex.

5

6 1

4 3

2

2

1

1

1

3

2

2
3 4

X = {(1, 2), (3, 4), (5, 6)}

A maximum cardinality matching is a matching containing as many
edges as possible (as shown above).

In this chapter we consider the problem of finding a maximum cardinality
matching whose maximum edge cost is minimal. We call this a
bottleneck matching problem.

 15

To find a bottleneck matching K.V.S. Baht used a maximum cardinality
matching algorithm in combination with binary search which performed in
O(n m log n) time.
This method is described below and then modified to work in O(n log n
m) time.

2.2 Maximum Cardinality Matchings

In this chapter we want to show an algorithm that completes a maximum
cardinality matching in bipartite graphs in O(n m) time from Hopcroft and
Karp (1973).
An algorithm which is also bound by O(n m) for general graphs was
developed by Micali and Vazirani seven years later but can not be shown
here due to time constraints.
The former algorithm is based on two theorems. Those we want to show
now.

 16

2.2.1 Theorem about Matching Augmenting Path

Definition:
Vertices that are not incident to matching edges v ∈ X are called
unmatched or exposed vertices.

Definition:
A path P = (i1, …, iq, iq+1, …, ie) is called an alternating path wrt. X, if l ≥ 2
and if the edges are alternating free and matched, where the starting
edge is free.

Definition:
A matching augmenting path (ma-path) is an alternating path P for which
both endpoints are exposed.

Example:

5

6 1

4 3

2

X = {(1, 5), (3, 4)}
Exposed vertices: 2, 6
P1 = (5, 4, 3) is an alternating path but not an ma-path.
P2 = (6, 1, 5, 4, 3, 2,) and P3 = (2, 1, 5, 6) are ma-paths.

Theorem:
X is a maximal matching in G = (v, E) if and only if there does not exist
an ma-path wrt. X.

Proof:

We will show: X is not a maximal matching iff there exists an ma-
path P = (i1, ..., ie).

 17

“” We will show, that the symmetric difference
X’ := X ∆ P = (X \ P) (P \ X) is a matching with |X’| = |X| +1.

Example:

5

6 1

4 3

2

G:

X = {(1, 5), (3, 4)}
|X| = 2

P = (2, 1, 5, 6)

5

6 1

4 3

2

X \ P:

5

6 1

4 3

2

P \ X:

X’ = (X \ P) (P \ X)
= {(1, 2), (3, 4), (5, 6)}

|X’| = 3

5

6 1

4 3

2

X':

Since both endpoints of P are exposed, we know that the number l
of vertices in P is even and that P has l-1 edges. Furthermore, P is
alternating and thus: |X ∩ P| = ½ l-1 and |P \ X| = ½ l.
This implies:

|X’| = |X ∆ P| = |X \ P| + |P \ X|
= (|X - |X ∩ P|) + |P \ X|
= |X| - ½ l+1 +1/2 l
= |X| +1

We consider the vertices v ∈ V to show that X’ is a matching.

 18

• v ∉ P Î v is the endpoint of at most one edge in X and
therefore also of at most one edge in X’.

• v ∈ P Î For v = i1, v is an endpoint of the edge [i1, i2] ∈ X’. For v
= ie, v is an endpoint of the edge [ie-1, ie] ∈ X’.
Since i1 and ie were exposed in X, these two edges are the only
edges in X’ that are incident with i1 and ie respectively.
For v ∈ [i2, …, ie-1] the edge that is matched by v changes under
the transition from X to X’.

Therefore all vertices v ∈ V are incident to at most one edge in X’.
Î X’ is a matching and larger than X.

“Î” Let X’ be a maximal matching, i.e. |X’| > |X|. We consider the graph
G∆ := (V, X ∆ X’)
Example:

1

3

5

2

4

6

1

3

5

2

4

6

1

3

5

2

4

6

G: X: X':

G∆ := (V, X ∆ X’) = (V, (X \ X’) (X’ \ X))

1

3

5

2

4

6

Every vertex in G∆ is incident to 0, 1 or 2 edges since X and X’ are
matchings.
Thus G∆ decomposes into subgraphs which are isolated vertices
and alternationg path wrt. X or X’, or which are alternating cycles
wrt. X or X’.
In every alternating cycle C, |X ∩ C| = |X’ ∩ C|.
Therefore, using |X’| > |X|, there must exist an alternating path P
wrt. X with |X’ ∩ P| > |X ∩ P|. This is only possible if both endpoints
of P are exposed wrt. X, i.e. P is an ma-path wrt. X.

q.e.d.

 19

The second theorem we need for the maximum cardinality matching
algorithm is König’s theorem.

2.2.2. König’s Theorem

Let ν(G) denote the cardinality of a maximal matching in a given bipartite
graph g.

Definition:
A node cover of G = (L R, E) is a subset K ⊂ (L R) such that [l, r] ∈
E Î l ∈ K or r ∈ K.

Let τ (G) denote the cardinality of a minimal covering of G, i.e.
τ (G) := min {|K| : K is a cover of G}.

König’s Theorem:
For any bipartite graph G the cardinality of a maximal matching is equal
to the cardinality of a minimal covering

ν(G) = τ (G).

Proof:
“ν(G) ≤ τ (G)”:

If X is an arbitrary matching and if K is an arbitrary covering, then
all [i, j] ∈X satisfy: i ∈ K or j ∈ K.
It follows, that |X| ≤ |K| and therefore

ν(G)= max {|X|: X matching} ≤ min {|K|: K covering} = τ (G).
“τ (G) ≤ ν(G)”:

Let X be a maximal matching, i.e. |X| = ν(G), and let LX := {l ∈ L : ∃
e = [l, r] ∈ X} be the set of vertices in L that are saturated by X, and
define ĽX := L \ LX.

 20

Example:

1 2

3 4

5 6

7

L
R

X = {(1, 2), (3, 4), (5, 6)}
LX = {1, 3, 5}
ĽX = {7}

We show: τ (G) ≤ ν(G)

• Case 1: ĽX = { }
Then K = LX is a covering and |X| = |K|

• Case 2: ĽX ≠ { }
Let VX be the set of all vertices in R ∪ L that lie on an
alternating path wrt. X starting in a vertex l ∈ ĽX and let Rx :=
R ∩ VX.
Example:

P = (7, 6, 5, 4, 3, 2, 1)
VX = {1, 2, 3, 4, 5, 6, 7}
RX = {2, 4, 6}

Then all r ∈ RX are saturated (else an ma-path would exist
and X would not be maximal).
Define: K := (LX \ VX) ∪ RX.
Example:

K = {2, 4, 6}
We show that K is a covering satisfying |K| ≤ |X|.
a) If K was not a covering, there would exist an edge with

one endpoint in L \ (LX \ VX) = ĽX ∪ (VX ∩ LX) and the other
endpoint in R \ RX.
This contradicts the definition of RX and of alternating
paths, which implies that
∀ l ∈ ĽX ∪ (VX ∩ LX) : ([l, r] ∈ E Î r ∈ RX).

 21

Example:

ĽX = {7]; LX = {1, 3, 5}; VX = {1, 2, 3, 4, 5, 6, 7}
Î∀ l ∈ {1, 3, 4, 7}: ([l, r] ∈ E Î r ∈ {2, 4, 6})

1 2

3 4

5 6

7

RXLX ∪ (VX ∩ LX)

2

Î K is a cover.

b) |K| ≤ |X| since
∀ r ∈ RX: ([l, r] ∈ X Î l ∈ (VX ∩ LX)
∀ l ∈ (LX \ VX): ([l, r] ∈ X Î r ∉ RX)

 ÎCombining both cases we can conclude that τ (G) ≤ ν(G).
Î τ (G) = ν(G).

q.e.d.

 22

2.3 Maximum Cardinality Matching Algorithm

The theorems and their proofs show, that we can obtain a maximal
matching algorithm and a minimal covering by iteratively searching for
ma-path.
Orienting the edges e from L to R if e ∉ X and from R to L if e ∈ X, we
can reduce the search for ma-path to a path problem in digraphs.
The following cardinality matching algorithm was developed by Hopcroft
and Karp:

Maximum Cardinality Algorithm for Bipartite Graphs

(Input) G = (L ∪ R, E) bipartite graph; X matching (e.g. X = { }

1) Orient all edges e = [l, r] ∈ E from left to right, i.e. e = (l, r) if e ∈ E \ X,

and from right to left, i.e. e = (r, l) if e ∈ X.
Set L’ := L, R’ := R, VX = { }

2) If all vertices in L’ are matched, then (STOP), X is a maximal
matching.
ELSE determine a minimal covering K (for example like in “case 2” of
the proof of König’s theorem).

3) a) Choose an exposed vertex l ∈ L’.
b) Set Vl := {v ∈ (L ∪ R’): v lies on an alternating path which only uses
vertices from the set (L ∪ R’) and that starts in L}.
As soon as v ∈ Vl is exposed, set X := X ∆ P,where P is a path from l
to v in G, (GOTO 1).
If no vertex v ∈ Vl is exposed, set L’ := L \ Vl, R’ := R \ Vl,
VX := VX ∪ VL. (GOTO 2).

Example:
Input: l1

l2

l3

l4 r4

r3

r2

r1

G = (L ∪ R, E)
X = {(l1, r2), (l3, r3)}

 23

Step 1: l1

l2

l3

l4 r4

r3

r2

r1 *

*

*

*

Direction of G
Exposed vertices are marked by *.
L’ = L = {l1, l2, l3, l4}
R’ = R = {r1, r2, r3, r4}
VX = { }

Step 2: l2 and l4 in L’ are not matched.
Determine minimal covering K.
K = {r1, r2, l3}

Step 3: a) Choose l4 ∈ L’ exposed.
b) Vl := {l4, r2, l1, r1} = P
X := (X \ P) ∪ (P \ X) = {(l3, r3), (l4, r2), (l1, r1)}
GOTO Step 1

Step 1: l1

l2

l3

l4 r4

r3

r2

r1

*

*

L’ = {l1, l2, l3, l4}
R’ = {r1, r2, r3, r4}
VX = { }

Step 2: l2 in L’ is not matched.
Determine minimal covering K.
K = {l2, r2, r3, r4}

Step 3: a) Choose l4 ∈ L’ exposed.
b) Vl := {l2, r2, l4, r3, l3, r4} = P
X := (X \ P) ∪ (P \ X) = {(l1, r1), (l2, r2), (l4, r3), (l3, r4)}
GOTO Step 1

Step 1: l1

l2

l3

l4 r4

r3

r2

r1

L’ = L
R’ = R
VX = { }

Step 2: All l ∈ L’ are matched. (STOP)

 24

2.4 Developing a faster Algorithm

The algorithm from Hopcroft and Carp as well as the algorithm for the
general case from Micali and Vazirani for computing maximal cardinality
matchings have another important property. They can be used as
approximation algorithms.
If M* is such a maximum cardinality matching, then in O(km) time for any
k either algorithm will compute a matching M such that |M*| - |M| ≤ n/k.

The first step in the new algorithm is to sort all edges by their cost, which
takes O(m log n) time.
Let e1, ..., em be the row of edges with non-decreasing cost.
Using a maximum cardinality matching algorithm, we compute l, which is
the size of a maximum cardinality matching. Then we use binary search
to find the minimum value i* of i, such that the graph Gi = (V, Ei = { e1, ...,
ei}) contains a matching of size l.
To test if our guess i for i* is high or low, we use a maximum cardinality
matching subroutine.
The total running time of this method is O(n m log n).
Example:

V = {1, 2, 3, 4}
E = {(1, 2), (1, 4), (2, 3), (3, 4)}

1 2

3 4

3

4

7

8

Sort: e1 = (1, 2); e2 = (3, 4); e3 = (2, 3), e4 = (1, 4)
Compute l with maximal cardinality matching algorithm: l=2

• i = 1: G1 = {(1, 2)} Î no matching.
• i = 2: G2 = {(1, 2), (3, 4)} Î matching!

 25

2.5 Enhancing the Algorithm’s Performance

Now, that we got an idea how the algorithm works, we do better by using
binary search to find a bottleneck matching that is only approximately of
maximum cardinality.
For a parameter k we compute a value i’ such that the graph Gi’ has a
matching size of at least l – n/k, and Gi’-1 does not have a matching size
of l.
To test whether a guess i for i’ is high or low, we use the approximation
version of our maximum cardinality matching algorithm.
We compute a matching M in Gi, such that |M| is within n/k of maximum
cardinality.
If |M| < l – n/k, the i is chosen to low.
The time to find i’ using this approach is O(km log n). This gives us not
only a value for i’, but also a matching M of size at least l – n/k, all of
whose edges have cost at most c(ei’) ≤ c(ei*).
Now this matching M can be augmented to form a bottleneck matching.
To do so, we have to find a bottleneck augmenting path, augmenting M
accordingly, and repeating this at most n/k – times.
The search for an augmenting path can be done in O(m) time by using a
standard method (as described below) and making it incremental as in
1.5.

Before we do so, let us have a short look at the Ford-Fulknerson Method
for finding augmenting path:

1) Mark nodes as matched or unmatched.
2) Start a search from each of the unmatched left nodes.
3) Traverse unmatched edges from left to right.
4) Traverse matched edges from right to left.
5) Stop successfully if an unmatched right node is reached.
6) Stop with failure if search terminates without finding an

unmatched right node.
This method corresponds to “case 2” in the proof of König’s Theorem.

To make this search now incremental, we initialise i to be equal ti i’, let
the search advance only along edges in Ei, and increase I by one each
time the algorithm stops with failure.

2.6 Computing times

The total time to augment M to form a bottleneck matching is O(n m/k).
The overall time to find a bottleneck matching is O(mk log n + n m/k).
Choosing k = log n gives us a time bound of O (n log n m).

 26

3. Further Developments

The bottleneck spanning tree algorithm from Tarjan and Gabow performs
as we saw in 1.4 in O(m log*n) time.
In 1994 Punnen and Nair developed an algorithm that solves the
problem in O(min (m log n log β(m, n), m log n log log C) time, with
β(m, n) = min (i/log(i)n ≤ m/n).
For m ≥ O(n log n log log*n) their algorithm runs in O(m) time and hence
is the best possible in this case.
The bottleneck maximum cardinality matching algorithm proposed by
Tarjan and Gabow performs as stated in 2.6 in O (n log n m) time.
Meanwhile several authors developed algorithms for this problem that all
perform close to O(3 n²).

